The Bloch Space and Bmo Analytic Functions in the Tube over the Spherical Cone

نویسنده

  • DAVID BEKOLLE
چکیده

We prove that the Bloch space coincides with the space BMOA in the tube over the spherical cone of R.3; this extends a well-known onedimensional result. Introduction. Let Q be a symmetric Siegel domain of type II contained in Cn. Let V denote the Lebesgue measure in fi and H{Q) the space of holomorphic (or analytic) functions in fi. When n = 1 and fi = tt+ = {z £ C: Imz > 0}, a Bloch function is an element / of H{tt+) which satisfies the estimate 11/11.»= sup {y\f'{z)\} <oo. z=x-\-iytzit+ The Bloch space 3§ of tt+ is then the quotient space of the space of Bloch functions by the subspace of constant functions. It is well known that in ir+, the Bloch space ¿¡8 coincides with the quotient space BMOA of the space of BMO analytic functions by the subspace of constant functions. The definition of BMO in 7r+ is the same as that of (solid) BMO in the unit disk (cf. [6, p. 631]): in tt+, a locally integrable function / is said to be BMO if there exists a constant C such that for any disk D contained in 7r+, there is a constant fo such that mU'-fD\dV <c. In C2, this result can easily be extended to the cartesian product {n+)2 of two upper half-planes. In this case, a Bloch function is an element of H[{ir+)2} which satisfies the estimate sup < y0yi z={z0,zi) = (x0+iyo,x¡+iy¡)€(ir+)'2 I d2 dzodzi < CO. The Bloch space SS of {ir+)2 is then the quotient space of the space of Bloch functions by the subspace JV= {'s*(<*+«:ää'«s0}Received by the editors May 1, 1986 and, in revised form, December 4, 1986. 1980 Mathematics Subject Classification (1985 Revision). Primary 32M15, 46E99, 47B38.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Weighted Composition Operators From Logarithmic Bloch Type Spaces to $ n $'th Weighted Type Spaces

Let $ mathcal{H}(mathbb{D}) $ denote the space of analytic functions on the open unit disc $mathbb{D}$. For a weight $mu$ and a nonnegative integer $n$, the $n$'th weighted type space $ mathcal{W}_mu ^{(n)} $ is the space of all $fin mathcal{H}(mathbb{D}) $ such that $sup_{zin mathbb{D}}mu(z)left|f^{(n)}(z)right|begin{align*}left|f right|_{mathcal{W}_...

متن کامل

Essential norm estimates of generalized weighted composition operators into weighted type spaces

Weighted composition operators appear in the study of dynamical systems and also in characterizing isometries of some classes of Banach spaces. One of the most important generalizations of weighted composition operators, are generalized weighted composition operators which in special cases of their inducing functions give different types of well-known operators like: weighted composition operat...

متن کامل

Analytic Besov spaces and Hardy-type inequalities in tube domains over symmetric cones

We give various equivalent formulations to the (partially) open problem about Lboundedness of Bergman projections in tubes over cones. Namely, we show that such boundedness is equivalent to the duality identity between Bergman spaces, A ′ = (Ap)∗, and also to a Hardy type inequality related to the wave operator. We introduce analytic Besov spaces in tubes over cones, for which such Hardy inequa...

متن کامل

Bloch and Bmo Functions in the Unit Ball

We give a characterization of lacunary series in the Bloch space of the unit ball in C in terms of Taylor coefficients. We also characterize Bloch functions whose Taylor coefficients are nonnegative. The corresponding problems for BMOA are discussed as well.

متن کامل

Quasi-orthogonal expansions for functions in BMO

For {φ_n(x)}, x ε [0,1] an orthonormalsystem of uniformly bounded functions, ||φ_n||_{∞}≤ M

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010